Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Epidemiol Infect ; 151: e58, 2023 03 20.
Article in English | MEDLINE | ID: covidwho-2249126

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) rapidly replaced Delta (B.1.617.2) to become dominant in England. Our study assessed differences in transmission between Omicron and Delta using two independent data sources and methods. Omicron and Delta cases were identified through genomic sequencing, genotyping and S-gene target failure in England from 5-11 December 2021. Secondary attack rates for named contacts were calculated in household and non-household settings using contact tracing data, while household clustering was identified using national surveillance data. Logistic regression models were applied to control for factors associated with transmission for both methods. For contact tracing data, higher secondary attack rates for Omicron vs. Delta were identified in households (15.0% vs. 10.8%) and non-households (8.2% vs. 3.7%). For both variants, in household settings, onward transmission was reduced from cases and named contacts who had three doses of vaccine compared to two, but this effect was less pronounced for Omicron (adjusted risk ratio, aRR 0.78 and 0.88) than Delta (aRR 0.62 and 0.68). In non-household settings, a similar reduction was observed only in contacts who had three doses vs. two doses for both Delta (aRR 0.51) and Omicron (aRR 0.76). For national surveillance data, the risk of household clustering, was increased 3.5-fold for Omicron compared to Delta (aRR 3.54 (3.29-3.81)). Our study identified increased risk of onward transmission of Omicron, consistent with its successful global displacement of Delta. We identified a reduced effectiveness of vaccination in lowering risk of transmission, a likely contributor for the rapid propagation of Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , England/epidemiology
2.
Nat Commun ; 13(1): 1012, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-2275346

ABSTRACT

Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.


Subject(s)
COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Genomics , Health Impact Assessment , Humans , SARS-CoV-2/classification , Travel/legislation & jurisprudence , Travel-Related Illness
3.
Lancet Respir Med ; 10(11): 1074-1085, 2022 11.
Article in English | MEDLINE | ID: covidwho-2184772

ABSTRACT

BACKGROUND: In the UK, during the study period (April to July, 2021), all contacts of people with COVID-19 were required to self-isolate for 10 days, which had adverse impacts on individuals and society. Avoiding the need to self-isolate for those who remain uninfected would be beneficial. We investigated whether daily use of lateral flow devices (LFDs) to test for SARS-CoV-2, with removal of self-isolation for 24 h if negative, could be a safe alternative to self-isolation as a means to minimise onward transmission of the virus. METHODS: We conducted a randomised, controlled, non-inferiority trial in adult contacts identified by COVID-19 contact tracing in England. Consenting participants were randomly assigned to self-isolation (single PCR test, 10-day isolation) or daily contact testing (DCT; seven LFD tests, two PCR tests, no isolation if negative on LFD); participants from a single household were assigned to the same group. Participants were prospectively followed up, with the effect of each intervention on onward transmission established from routinely collected NHS Test and Trace contact tracing data for participants who tested PCR-positive for SARS-CoV-2 during the study period and tertiary cases arising from their contacts (ie, secondary contacts). The primary outcome of the study was the attack rate, the percentage of secondary contacts (close contacts of SARS-CoV-2-positive study participants) who became COVID-19 cases (tertiary cases) in each group. Attack rates were derived from Bernoulli regression models using Huber-White (robust) sandwich estimator clustered standard errors. Attack rates were adjusted for household exposure, vaccination status, and ability to work from home. The non-inferiority margin was 1·9%. The primary analysis was a modified intention-to-treat analysis excluding those who actively withdrew from the study as data from these participants were no longer held. This study is registered with the Research Registry (number 6809). Data collection is complete; analysis is ongoing. FINDINGS: Between April 29 and July 28, 2021, 54 923 eligible individuals were enrolled in the study, with final group allocations (following withdrawals) of 26 123 (52·6%) participants in the DCT group and 23 500 (47·4%) in the self-isolation group. Overall, 4694 participants tested positive for SARS-CoV-2 by PCR (secondary cases), 2364 (10·1%) in the self-isolation group and 2330 (8·9%) in the DCT group. Adjusted attack rates (among secondary contacts) were 7·5% in the self-isolation group and 6·3% in the DCT group (difference of -1·2% [95% CI -2·3 to -0·2]; significantly lower than the non-inferiority margin of 1·9%). INTERPRETATION: DCT with 24 h exemption from self-isolation for essential activities appears to be non-inferior to self-isolation. This study, which provided evidence for the UK Government's daily lateral flow testing policy for vaccinated contacts of COVID-19 cases, indicated that daily testing with LFDs could allow individuals to reduce the risk of onward transmission while minimising the adverse effects of self-isolation. Although contacts in England are no longer required to isolate, the findings will be relevant for future policy decisions around COVID-19 or other communicable infections. FUNDING: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Incidence , Family Characteristics
4.
Epidemiol Infect ; 150: e162, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1991464

ABSTRACT

Symptoms are currently used as testing indicators for SARS-CoV-2 in England. In this study, we analysed national contact tracing data for England (NHS Test and Trace) for the period 1 December to 28 December 2021 to explore symptom differences between the variants, Delta and Omicron. We found that at least one of the symptoms currently used as indicators (fever, cough and loss of smell and taste) were reported in 61.5% of Omicron cases and 72.2% in Delta cases, suggesting that these symptoms are less predictive of Omicron infections. Nearly 40% of Omicron infections did not report any of the three key indicative symptoms, reinforcing the importance of the entire spectrum of symptoms for targeted testing. After adjusting for potential confounding factors, fever and cough were more commonly associated with Omicron infections compared to Delta, showing the importance of considering age and vaccination status when assessing symptom profiles. Sore throat was also more commonly reported in Omicron infections, and loss of smell and taste more commonly reported in Delta infections. Our study shows the value of continued monitoring of symptoms associated with SARS-CoV-2, as changes may influence the effectiveness of testing policy and case ascertainment approaches.


Subject(s)
COVID-19 , Contact Tracing , Anosmia , COVID-19/epidemiology , Cough , England/epidemiology , Fever , Humans , SARS-CoV-2/genetics
5.
J Med Microbiol ; 71(8)2022 Aug.
Article in English | MEDLINE | ID: covidwho-1985225

ABSTRACT

Introduction. Evidence suggests that although people modify their behaviours, full adherence to self-isolation guidance in England may be suboptimal, which may have a detrimental impact on COVID-19 transmission rates.Hypothesis. Testing asymptomatic contacts of confirmed COVID-19 cases for the presence of SARS-CoV-2 could reduce onward transmission by improving case ascertainment and lessen the impact of self-isolation on un-infected individuals.Aim. This study investigated the feasibility and acceptability of implementing a 'test to enable approach' as part of England's tracing strategy.Methodology. Contacts of confirmed COVID-19 cases were offered serial testing as an alternative to self-isolation using daily self-performed lateral flow device (LFD) tests for the first 7 days post-exposure. Asymptomatic participants with a negative LFD result were given 24 h of freedom from self-isolation between each test. A self-collected confirmatory PCR test was performed on testing positive or at the end of the LFD testing period.Results. Of 1760 contacts, 882 consented to daily testing, of whom 812 individuals were within 48 h of exposure and were sent LFD testing packs. Of those who declined to participate, 39.1% stated they had already accessed PCR testing. Of the 812 who were sent LFD packs, 570 (70.2%) reported one or more LFD results; 102 (17.9%) tested positive. Concordance between reported LFD result and a supplied LFD image was 97.1%. In total, 82.8% of PCR-positive samples and 99.6% of PCR-negative samples were correctly detected by LFD. The proportion of secondary cases from contacts of those who participated in the study and tested positive (6.3%; 95% CI: 3.4-11.1%) was comparable to a comparator group who self-isolated (7.6%; 95% CI: 7.3-7.8%).Conclusion. This study shows a high acceptability, compliance and positivity rates when using self-administered LFDs among contacts of confirmed COVID-19 cases. Offering routine testing as a structured part of the contact tracing process is likely to be an effective method of case ascertainment.


Subject(s)
COVID-19 , COVID-19/diagnosis , Contact Tracing/methods , England/epidemiology , Humans , SARS-CoV-2
6.
Epidemiol Infect ; 150: e42, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1721341

ABSTRACT

A subset of events within the UK Government Events Research Programme (ERP), developed to examine the risk of transmission of COVID-19 from attendance at events, was examined to explore the public health impact of holding mass sporting events. We used contact tracing data routinely collected through telephone interviews and online questionnaires, to describe the potential public health impact of the large sporting and cultural events on potential transmission and incidence of COVID-19. Data from the EURO 2020 matches hosted at Wembley identified very high numbers of individuals who tested positive for COVID-19 and were traced through NHS Test & Trace. This included both individuals who were potentially infectious (3036) and those who acquired their infection during the time of the Final (6376). This is in contrast with the All England Lawn Tennis Championships at Wimbledon, where there were similar number of spectators and venue capacity but there were lower total numbers of potentially infectious cases (299) and potentially acquired cases (582). While the infections associated with the EURO 2020 event may be attributed to a set of socio-cultural circumstances which are unlikely to be replicated for the forthcoming sporting season, other aspects may be important to consider including mitigations for spectators to consider such as face coverings when travelling to and from events, minimising crowding in poorly ventilated indoor spaces such as bars and pubs where people may congregate to watch events, and reducing the risk of aerosol exposure through requesting that individuals avoid shouting and chanting in large groups in enclosed spaces.


Subject(s)
COVID-19/epidemiology , Mass Gatherings , Public Health , Sports , COVID-19/transmission , Contact Tracing , England/epidemiology , Humans , SARS-CoV-2
7.
Lancet Reg Health Eur ; 12: 100252, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1568914

ABSTRACT

BACKGROUND: The SARS-CoV-2 Delta variant (B.1.617.2), first detected in India, has rapidly become the dominant variant in England. Early reports suggest this variant has an increased growth rate suggesting increased transmissibility. This study indirectly assessed differences in transmissibility between the emergent Delta variant compared to the previously dominant Alpha variant (B.1.1.7). METHODS: A matched case-control study was conducted to estimate the odds of household transmission (≥ 2 cases within 14 days) for Delta variant index cases compared with Alpha cases. Cases were derived from national surveillance data (March to June 2021). One-to-two matching was undertaken on geographical location of residence, time period of testing and property type, and a multivariable conditional logistic regression model was used for analysis. FINDINGS: In total 5,976 genomically sequenced index cases in household clusters were matched to 11,952 sporadic index cases (single case within a household). 43.3% (n=2,586) of cases in household clusters were confirmed Delta variant compared to 40.4% (n= 4,824) of sporadic cases. The odds ratio of household transmission was 1.70 among Delta variant cases (95% CI 1.48-1.95, p <0.001) compared to Alpha cases after adjusting for age, sex, ethnicity, index of multiple deprivation (IMD), number of household contacts and vaccination status of index case. INTERPRETATION: We found evidence of increased household transmission of SARS-CoV-2 Delta variant, potentially explaining its success at displacing Alpha variant as the dominant strain in England. With the Delta variant now having been detected in many countries worldwide, the understanding of the transmissibility of this variant is important for informing infection prevention and control policies internationally.

SELECTION OF CITATIONS
SEARCH DETAIL